## WESTCODE

Date:- 6 Feb, 2001

Data Sheet Issue:- 1

# Phase Control Thyristor Types N1265LS120 to N1265LS150

#### **Absolute Maximum Ratings**

|           | VOLTAGE RATINGS                                 | MAXIMUM<br>LIMITS | UNITS |
|-----------|-------------------------------------------------|-------------------|-------|
| $V_{DRM}$ | Repetitive peak off-state voltage, (note 1)     | 1200-1500         | V     |
| $V_{DSM}$ | Non-repetitive peak off-state voltage, (note 1) | 1200-1500         | V     |
| $V_{RRM}$ | Repetitive peak reverse voltage, (note 1)       | 1200-1500         | V     |
| $V_{RSM}$ | Non-repetitive peak reverse voltage, (note 1)   | 1300-1600         | V     |

|                      | OTHER RATINGS                                                                                   | MAXIMUM<br>LIMITS     | UNITS            |
|----------------------|-------------------------------------------------------------------------------------------------|-----------------------|------------------|
| I <sub>T(AV)</sub>   | Mean on-state current, T <sub>sink</sub> =55°C, (note 2)                                        | 1265                  | Α                |
| I <sub>T(AV)</sub>   | Mean on-state current. T <sub>sink</sub> =85°C, (note 2)                                        | 855                   | Α                |
| I <sub>T(AV)</sub>   | Mean on-state current. T <sub>sink</sub> =85°C, (note 3)                                        | 507                   | Α                |
| I <sub>T(RMS)</sub>  | Nominal RMS on-state current. T <sub>sink</sub> =25°C, (note 2)                                 | 2517                  | Α                |
| I <sub>T(d.c.)</sub> | D.C. on-state current. T <sub>sink</sub> =25°C, (note 4)                                        | 2133                  | Α                |
| I <sub>TSM</sub>     | Peak non-repetitive surge t <sub>p</sub> =10ms, V <sub>RM</sub> =0.6V <sub>RRM</sub> , (note 5) | 15.0                  | kA               |
| I <sub>TSM2</sub>    | Peak non-repetitive surge t <sub>p</sub> =10ms, V <sub>RM</sub> ≤10V, (note 5)                  | 16.0                  | kA               |
| l <sup>2</sup> t     | $I^2$ t capacity for fusing $t_p$ =10ms, $V_{RM}$ =0.6 $V_{RRM}$ , (note 5)                     | 1.125×10 <sup>6</sup> | A <sup>2</sup> s |
| l <sup>2</sup> t     | I <sup>2</sup> t capacity for fusing t <sub>p</sub> =10ms, V <sub>RM</sub> ≤10V, (note 5)       | 1.280×10 <sup>6</sup> | A <sup>2</sup> s |
| d: /d+               | Maximum rate of rise of on-state current (repetitive), (Note 6)                                 | 500                   | A/µs             |
| di <sub>⊤</sub> /dt  | Maximum rate of rise of on-state current (non-repetitive), (Note 6)                             | 1000                  | A/µs             |
| $V_{RGM}$            | Peak reverse gate voltage                                                                       | 5                     | V                |
| P <sub>G(AV)</sub>   | Mean forward gate power                                                                         | 4                     | W                |
| P <sub>GM</sub>      | Peak forward gate power                                                                         | 30                    | W                |
| $V_{GD}$             | Non-trigger gate voltage, (Note 7)                                                              | 0.25                  | V                |
| T <sub>HS</sub>      | Operating temperature range                                                                     | -40 to +125           | °C               |
| T <sub>stg</sub>     | Storage temperature range                                                                       | -40 to +150           | °C               |

#### Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T<sub>i</sub> below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T<sub>i</sub> initial.
- 6)  $V_D=67\% \ V_{DRM}, \ I_{TM}=2000A, \ I_{FG}=2A, \ t_r \le 0.5 \mu s, \ T_{case}=125 ^{\circ}C.$
- 7) Rated V<sub>DRM</sub>, T<sub>case</sub>=125°C.

#### **Characteristics**

|                 | PARAMETER                                  | MIN. | TYP. | MAX.  | TEST CONDITIONS (Note 1)                 | UNITS |
|-----------------|--------------------------------------------|------|------|-------|------------------------------------------|-------|
| $V_{TM}$        | Maximum peak on-state voltage              | -    | -    | 1.35  | I <sub>TM</sub> =1700A                   | V     |
| $V_0$           | Threshold voltage                          | -    | -    | 0.9   |                                          | V     |
| rs              | Slope resistance                           | -    | -    | 0.265 |                                          | mΩ    |
| dv/dt           | Critical rate of rise of off-state voltage | 1000 | -    | -     | V <sub>D</sub> =80% V <sub>DRM</sub>     | V/μs  |
| $I_{DRM}$       | Peak off-state current                     | -    | -    | 60    | Rated V <sub>DRM</sub>                   | mA    |
| $I_{RRM}$       | Peak reverse current                       | -    | -    | 60    | Rated V <sub>RRM</sub>                   | mA    |
| $V_{GT}$        | Gate trigger voltage                       | -    | -    | 3.0   | T <sub>j</sub> =25°C                     | V     |
| I <sub>GT</sub> | Gate trigger current                       | -    | -    | 300   | $T_{j}$ =25°C. $V_{D}$ =10V, $I_{T}$ =2A | mA    |
| lΗ              | Holding current                            | -    | -    | 1000  | T <sub>j</sub> =25°C                     | mA    |
| $R_{	heta}$     | Thermal resistance, junction to            | -    | -    | 0.032 | Double side cooled                       | K/W   |
| ινθ             | heatsink                                   | -    | -    | 0.064 | Single side cooled                       | K/W   |
| F               | Mounting force                             | 10   | -    | 20    |                                          | kN    |
| $W_t$           | Weight                                     | -    | 340  | -     |                                          | g     |

#### Notes:-

1) Unless otherwise indicated T<sub>j</sub>=125°C.

#### **Notes on Ratings and Characteristics**

#### 1.0 Voltage Grade Table

| Voltage Grade 'H' | $V_{ m DRM}  V_{ m DSM}  V_{ m RRM}                   $ | V <sub>RSM</sub><br>V | V <sub>D</sub> V <sub>R</sub><br>DC V |
|-------------------|---------------------------------------------------------|-----------------------|---------------------------------------|
| 12                | 1200                                                    | 1300                  | 810                                   |
| 14                | 1400                                                    | 1500                  | 930                                   |
| 15                | 1500                                                    | 1600                  | 990                                   |

#### 2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

#### 3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T<sub>i</sub> below 25°C.

#### 4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

#### 5.0 Computer Modelling Parameters

#### 5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_0 + \sqrt{{V_0}^2 + 4 \cdot ff^2 \cdot r_s \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_s} \qquad W_{AV} = \frac{\Delta T}{R_{th}}$$
 and: 
$$\Delta T = T_{j \max} - T_{Hs}$$

Where  $V_0=0.9V$ ,  $r_s=0.265$  m $\Omega$ ,

 $R_{th}$  = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

| Supplementary Thermal Impedance |        |        |        |        |        |        |       |
|---------------------------------|--------|--------|--------|--------|--------|--------|-------|
| Conduction Angle                | 30°    | 60°    | 90°    | 120°   | 180°   | 270°   | d.c.  |
| Square wave Double Side Cooled  | 0.048  | 0.0436 | 0.0413 | 0.0388 | 0.036  | 0.0345 | 0.032 |
| Square wave Single Side Cooled  | 0.079  | 0.0769 | 0.074  | 0.0716 | 0.0688 | 0.0665 | 0.064 |
| Sine wave Double Side Cooled    | 0.0415 | 0.0394 | 0.0378 | 0.0355 | 0.032  |        |       |
| Sine wave Single Side Cooled    | 0.0735 | 0.0718 | 0.07   | 0.0679 | 0.064  |        |       |

| Form Factors                                     |      |      |      |      |      |      |      |
|--------------------------------------------------|------|------|------|------|------|------|------|
| Conduction Angle 30° 60° 90° 120° 180° 270° d.c. |      |      |      |      |      |      | d.c. |
| Square wave                                      | 3.46 | 2.45 | 2    | 1.73 | 1.41 | 1.15 | 1    |
| Sine wave                                        | 3.98 | 2.78 | 2.22 | 1.88 | 1.57 |      |      |

#### 5.2 Calculating V<sub>T</sub> using ABCD Coefficients

The on-state characteristic I<sub>T</sub> vs. V<sub>T</sub>, on page 7 is represented in two ways;

- (i) the well established V<sub>o</sub> and r<sub>s</sub> tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for  $V_T$  in terms of  $I_T$  given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for  $V_T$  agree with the true device characteristic over a current range, which is limited to that plotted.

|   | 25°C Coefficients         |   | 125°C Coefficients        |
|---|---------------------------|---|---------------------------|
| Α | 0.5849886                 | Α | 0,6165875                 |
| В | 0.05741872                | В | 0.007612051               |
| С | 1,385753×10 <sup>-4</sup> | С | 1,241026×10 <sup>-4</sup> |
| D | 0.002745008               | D | 0,01118621                |

#### 5.3 D.C. Thermal Impedance Calculation

$$r_{t} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

r<sub>+</sub> = Thermal resistance at time t.

 $r_p$  = Amplitude of  $p_{th}$  term.

 $\tau_p$  = Time Constant of  $r_{th}$  term.

| D.C. Double Side Cooled |            |                           |                           |                           |  |  |  |
|-------------------------|------------|---------------------------|---------------------------|---------------------------|--|--|--|
| Term 1 2 3 4            |            |                           |                           |                           |  |  |  |
| $r_p$                   | 0.01771901 | 4.240625×10 <sup>-3</sup> | 6.963806×10 <sup>-3</sup> | 3.043661×10 <sup>-3</sup> |  |  |  |
| $	au_{ m p}$            | 0.7085781  | 0.1435833                 | 0.03615196                | 2.130842×10 <sup>-3</sup> |  |  |  |

|             | D.C. Single Side Cooled |            |                           |                           |                           |  |  |  |
|-------------|-------------------------|------------|---------------------------|---------------------------|---------------------------|--|--|--|
| Term        | m 1 2 3 4 5             |            |                           |                           |                           |  |  |  |
| $r_p$       | 0.03947164              | 0.01022837 | 8.789912×10 <sup>-3</sup> | 4.235162×10 <sup>-3</sup> | 1.907609×10 <sup>-3</sup> |  |  |  |
| $	au_{ ho}$ | 4.090062                | 1.078983   | 0.08530917                | 0.01128791                | 1.240861×10 <sup>-3</sup> |  |  |  |

#### Curves

Figure 1 - On-state current vs. Power dissipation - Double Side Cooled (Sine wave)

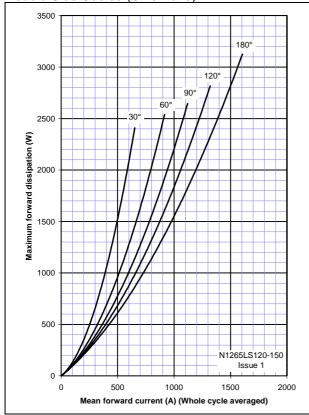



Figure 2 - On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

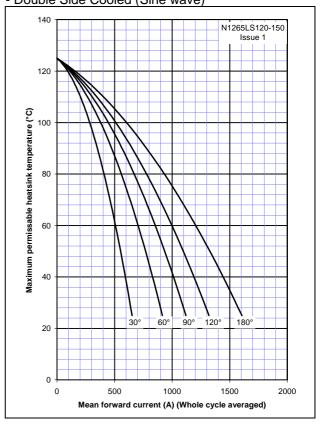



Figure 3 - On-state current vs. Power dissipation - Double Side Cooled (Square wave)

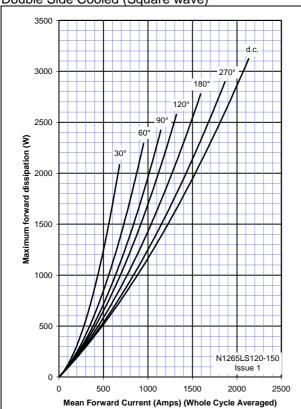



Figure 4 - On-state current vs. Heatsink temperature - Double Side Cooled (Square wave)

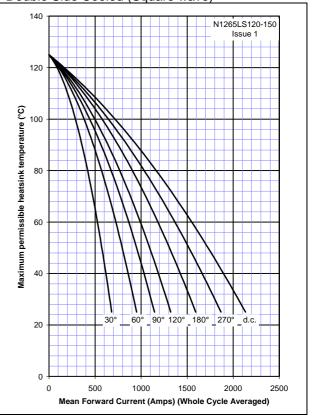



Figure 5 - On-state current vs. Power dissipation - Single Side Cooled (Sine wave)



Figure 6 - On-state current vs. Heatsink temperature - Single Side Cooled (Sine wave)

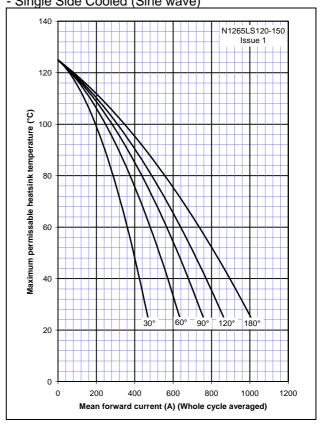



Figure 7 - On-state current vs. Power dissipation – Single Side Cooled (Square wave)

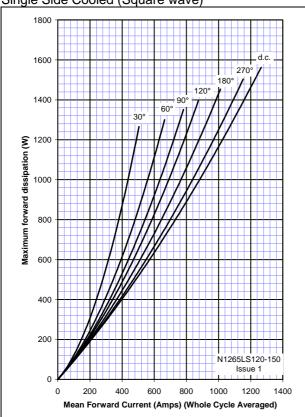
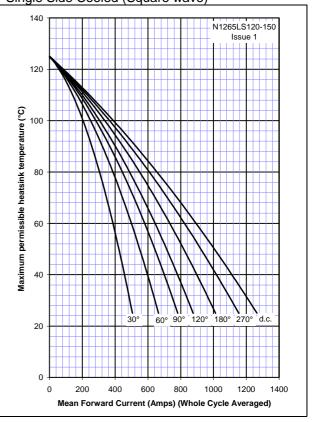




Figure 8 - On-state current vs. Heatsink temperature - Single Side Cooled (Square wave)





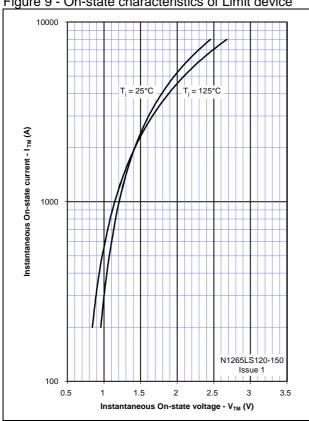



Figure 10 - Transient Thermal Impedance

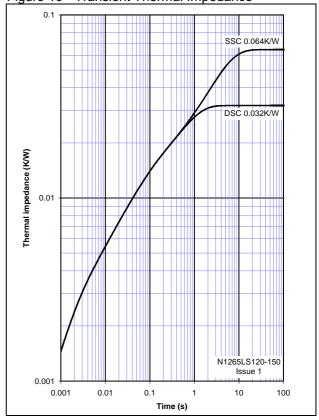



Figure 11 - Gate Characteristics - Trigger Limits

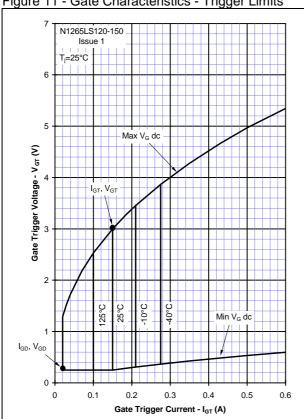
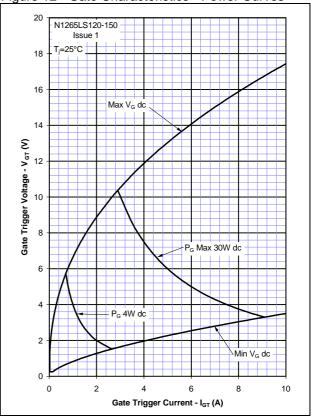
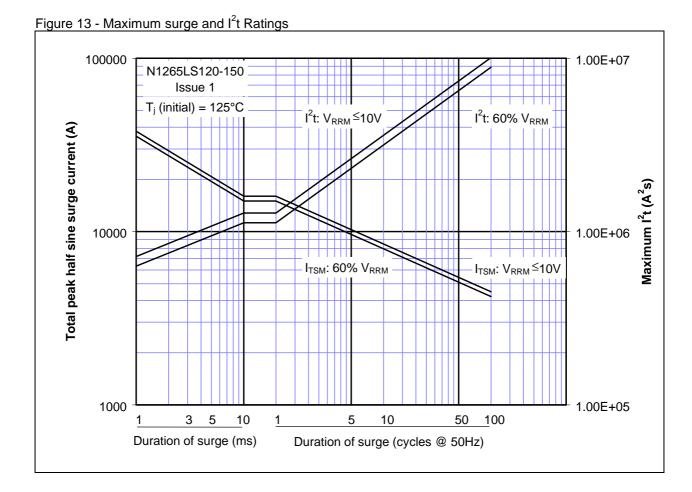
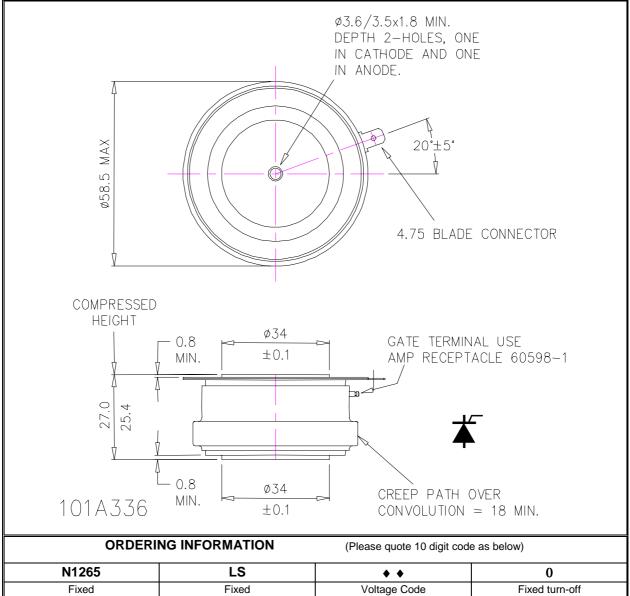






Figure 12 - Gate Characteristics - Power Curves





#### **Outline Drawing & Ordering Information**



Type Code Outline Code 12-15 time code

 $Typical\ order\ code: N1265LS140-1400V\ V_{DRM},\ V_{RRM},\ 1000V/\mu s\ dv/dt,\ 27mm\ clamp\ height\ capsule.$ 

### /ESTCODE

UK: Westcode Semiconductors Ltd. P.O. Box 57, Chippenham, Wiltshire, England. SN15 1JL. Tel: +44 (0) 1249 444524 Fax: +44 (0) 1249 659448 E-Mail: WSL.sales@westcode.com

> USA: Westcode Semiconductors Inc. 3270 Cherry Avenue, Long Beach, California 90807 Tel: +1 (562) 595 6971 Fax: +1 (562) 595 8182 E-Mail: WSI.sales@westcode.com

Internet: http://www.westcode.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors Westcode Semiconductors © Westcode Semiconductors Ltd.

In the interest of product improvement, Westcode reserves the right to change specifications at any time without prior

Devices with a suffix code (2-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.